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Abstract

This report summarizes the research carried out during the
period January through December 1964. Work during the last quarter
is emphasized. The goal of this work is to determine the mechanism
by which electrochemical fluorination of ammonium and hydrazinium
salts cccur in anhydrous hydrogen fluoride (AHF). A major portion
of the work to date has been done to (1) develop a suitable reference
ciceirode, (2) construct an HF handling system for preparing and
maintaining AHF at low electrical conductivities (i.e., 1072 07!
cm-l), and (3) select a suitable working electrode. The Hg/Hg2F2
electrode satisfies the requirements for a reference electrode,
and Monel (alloy 400) satisfies the requirements for a working
electrode. Monel is now being used as an anode and Hg/ngF2 as
a reference electrode in studying the electrolysis of NH,F in AHF.

vii
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ELEC1ROCHEMICAL sSTUDIEsS IN THE SYNTHESIS OF N-F COMPOUNDs
I. INTKODUCTION AND BACKGROUND

The »bjective ot this work is to empioy electrochemical
techniques fto determine if the tlu rination of ammonium and hydra-
zinium salts proceeds by a stepwise nechanism or if fluorine is
substituted for hydrogen in a random fashion. These data are to
be used in establishing if electrochemical {luorination of ammonium
and hydrazinium salts can produce tluorine-containing cationic
species such as Nﬁjr’, NHFD NHF;, NFy . and NoH.F'. N2H3F;, etc.

To employ electrochemical techniques, such a8s reaction order
methods, conductivity measurements, pulse techniques, and chrono-
potentiometry, successfu.ly for these studies, it is imperative
that the following experimentai conditions must be known and
maintained:

1. A working anode which has a known corrosion rate that

is small coupareld to the rate of fluorination studied.

2. A retference electrode that is reproducible, stable, and

reversible, havirg a potential with thermodynamic significance.

3. An experimental cell capaecie 0of maintaining AHF at

constant conducti.ity (i.e., drv and free of foreign iocns).

The problems relatineg to 1, 2, and 3 above have been solved
to a sufficient degree to allow reasconable certain interpretation
ot data concernine the fluorination ot NHI and NEH;.

In the search for & wohrkine anode to satisfy the requirement
of 1, above, twenty materials were i~vestiecated tor possible use
in electrechemical tlucrinati on., These miterials included aluminum,

antimory, bismuth, cadmiur, (hro-vum, cobalt, copper, Hastelloy-F,
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iron. magnesium, molybdenum, Monel, platinum, pyrolytic carbon,
silver, thallium, titanium, zinc, zirconium, and zirconium diboride.
All of these materials except Monel have been rejected for one or
more of the following reasons: excessive corrosion, unstable
electrochemical behavior, high film electrical resistance, or
undesirable interaction with the sclvent. Monel is the only
material investigated to date which has a sufficiently low corrosion
rate, low electrical resistance film, and reproducible behavior to
allow its use as a werking anode for fluorination studies in AHF.

Anodic polarization curves of Monel in AHF sciluticns of
NﬂuF revealed no concentration-dependent plateaus to indicate a
stepwise fluorination of the ammonium ion. The reproducibility
of these curves was poor, however, due to a change in character of
the surface film formed on Monel by anodic polarization above +4.0
volts with respect to the Hg/ngF2 reference electrode. Galvanostatic
cathodic reduction measurements have indicated that this change 1is
due to the sorption of fluorine in the fluoride film on the Monel
electrode. Since anodic polarization in AHF solutions of NHuF
involves fluorine evolution, fluorination of NH;, electrode oxidation,
and contaminant oxidation, the clarification of the sorbed layer

is important.
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11. EXPERIMENTAL APPARATUS

A schematic diagram for the Fy, HF, and N, handling system
is shown in Figure 1. 1In operation, the cleaned and dried conduc-
tance cell and electrolytic cells are assembled withcut the working
and reference electrodes. The entire HF handling system is then
treated with fluorine gas to passivate all surfaces that contact
HF. The cells are then purged with dry N2 and the conductance
cell filled with HF from the HF tank with the electrolytic cells
closed off. The HF in the Kel-F conductance cell is then
electrolyzed using nickel screen electrodes, while bubbling dry N2,
until a high resistivity is obtained as shown by measurements with
the platinum electrodes. The AHF is then allowed to distill over
into one of the Kel-F electrolytic cells where it is electrolyzed
again until a conductivity of 1072 0"l co”! is reached. The
Hg/Hg2F2 reference electrode is then introduced into the cell and
allowed several hours to come to equilibrium with the AHF before
it is used. Then the working electrode is inserted through the
cell lid into the HF. Nitrogen is bubbled through the cell while
the electrode is inserted to prevent diffusion of any contaminant
into the cell. Solid samples (i.e., NH,F or NaF) are injected
through an injection port on the cell lid. During electrolysis
dry N2 is used as a stirrer and a carrier gas.

The gas IR cell being used is made of nickel with Irtran-2
windows, a pathlength of 10 cm, and a volume of 26 cc. The liquid
IR cell is made of Monel with Teflon spacers ard gaskets, Irtran-2
wirdows, & variable pathlength up to 0.5 mm, and a maxir:u volume
of 0.3 ml.

All the working electrode materials reported are in the form
of 1/8" rods unless stated otherwise, and all potentials are volts
Vs Hg/Hg2F2 unless otherwise stated.
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III. REFERENCE ELECTRODES

In aqueous systems the most satisfactory reference electrodes
are those consisting of a metal with thermodynamic stability toward
water in intimate contact with a sparingly soluble salt of the metal.
The best known examples are Hg/Hg2012 and Ag/AgCl. In many cases
where the presence of the anion of the reference electrode is
undesirable, or where the use of a salt bridge is inconvenient, an
inert metal immersed in the sclution may possess sufficient poten-
tial stability providing only very low currents are drawn. Such
potential stability is dependent on the presence in solution of
small quantities of oxidizable or reducible species (1like ions of
the metal, hydrogen ions, metal oxides formed on the surface, etc.).
The best known examples of this in nonaquecus media is a platinum
wire reference electrode.

Reference electrodes investigated during this prcject have
included Pt, Ni/NiFa, A1/A1F3, and Hg/ngFa. These electrodes
were tested in like pairs, one of which was used as a base against
which the potentials of becth a working electrode and the other
like electrode were measured. These experiments were performed
to determine if the small current (10'9 amp) in the reference
electrode circuit of the potentiostat or ions introduced by
dissolutio. J>f the working electrode had any adverse effects on
the reference electrode. The average deviations of the open-
circuit potentials of the Pt, Ni/NiFQ, and Al/AlF3 electrodes
were greater than 100 mv, which is excessive for the objectives
of this project. However the deviations in the Hg/l{gal-‘2 electrodes
had a maximum of only 16 mv (see Table I).

Polarization curves using one Hg/ngF2 electrode as a
working electrode and another Hg/Hg2F2 electrode as the reference
electrode were made in 0.01M NaF in HF (Figure 2). Reversibility
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of the electrodes is indicated by the symmetry of the curves and
the instantaneous return to open-circuit potential from +1.0 v and
-1.0 v upon removal of the polarizing current. Potential decay
of the electrodes was faster than the pen speed of the recorder

(1 second full scale). The curves in Figure 2 also show that
polarization of the electrodes is insignificant for currents which
will be encountered (10'9 amp) in the potentiostat reference
circuit.

New Hg/HgaF2 reference electrodes vary widely in potential
difference but this decreases to within 0.014 v in a few hours
as shown in Figure 3. It is assumed that this behavior is due to
the establishment of equilibrium between the Hg2F2 and Hg in the
AHF and to effects of traces of HgaO (which form H,0 and HF in
the electrode).

Construction details for the Hg/HgaF2 reference electrode
are shown in Figure 4. It is necessary to build new electrodes
each time the electrolysis cell is disassembled because H32F2 is
decomposed by moist air.

In summary, both the electrochemical properties and the
physical construction of the Hg/H32F2 make it satisfactory for use
as a reference electrode in AHF.
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IV. ELECTROCHEMICAL FLUORINATION OF NH,F IN ANHVDROUS HYDROGEN
FLUORIDE WITH MONEL ANODES

Studies were made to determine if the electrochemical
fluorination of NH,F in AHF proceeded in a stepwise fashion as a
function of potential. Polarization curves were obtained, after
the injection of a certain amount of dry NH,F, by use of an X-Y
recorder and a motor-driven potentiometer (Figure 5). In these
curves a plateau similar to a diffusion limited region consistently
appeared at 3.0 to 5.0 v. The current density on this plateau is
independent of NH,F concentration or any contaminant added with
the NH“F. The effects of concentration and resistance polarization
with decreasing NH,F concentration are clearly seen; however, no
other evidence of depolarization of the electrode by addition of
NHuF was detected. Since there were no cuncentration-dependent
plateaus in the anodic polarization curves (up to +8.0 v vs
Hg/Hg2F2) of Monel in AHF solutions of NH,F, the fluorination of
NHI apparently does not proceed in a stepwise manner as a function
of the applied pcrential. It thus appears, that NHI is fluorinated
by chemical reaction in AHF. 1If the fluorination of NH: does
proceed by chemical reaction, it is still possible t> obtain the
cationic species NH3F+, N“zFZ’ NHF;, and NFy.

Further studies were made to determine the nature of the
plateau region mentioned above. A typical steady-state polarization
curve of Monel in AHF is shown in Figure 6. The presence of NH F
in the HF, results in a plateau region around +3.8 v (see Curve A
of Figure 7). Curve B of Figure 7 shows the effect that the
addition of 1% water to the NH F-HF solution has on the +3.8 v
plateau region. It is possible that this plateau region is due
to a scrbed species (possibly fluorine) on the metal fluoride
coating of the Mconel electrode. From Curve B {t may be postulated
that the sorbed species reacted with the added HQO, thus doing
away with the plateau region.

11
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Galvanostatic cathodic stripping curves of Monel polarized
anodically in AHF (Figure 8) and in AHF and NH,F solutions
(Figure 9) were recorded. The potential arrests at approximately
+2.0 v is in the region of the reduction potential for fluorine.
The total charge required for reduction of the film formed by
anodic bias of the Monel anode is not reproducible when equal
charges are passed at the anodic potential. As shown in Figure 10,
the char:2 required for reduction depends on the total charge
passed at +5.0 v rather than the increment of charge passed between
reductions. These data are summarized in Table II. These results
indicate that a portion of the film formed at +6.0 v is not reduced
under the conditions employed. From the data in Table II and the
curves in Figure 10, it appears a species other than the metal
fluoride is being reduced during the cathodic reduction experiments.

TABLE II

CHARGE REQUIRED FOR REDUCTION OF ANODIC FILMS FORMED
ON MONEL IN AHF SOLUTiONS OF NHuF

COULOMBS PASSED

+6.0 v(C,) Cathodic(C_) (c_/c,) x 1%  (c_/=c,) x 10°
47.3 6,200 ¥ 1070 133 133
43.2 13,050 x 10‘6 302 144
35.1 21,750 x 107° 619 173

15
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If the potential arrest at +2.0 v is due to the reduction
of fluorine which is sorbed on the fluoride film, it should be
possible to reach a state where the fluoride film would be
saturated with fluorine as long as the applied anodic bias is
above the fluorine evolution potential. This effect is shown in
Figure 11, runs 1 and 2. It should be noted that 154 coulombs
were passed at +6.0 v and the sorted fluorine reduced before the
first run was made. A flow of dry nitrogen at the rate of 22 cc/min
was used to stir the solution during the experiments. Once the
film is saturated, it should be possible to decrease the number of
coulombs applied anodically and thus have a decrease in the number
of coulombs required to reduce the sorbed fluorine. This can be
seen in runs 3 through 8. Here also it is observed that fluorine
and not the fluoride film is being reduced. Weight losses were
determined after each run and indicated that at least 90% of the

applied anodic current was going to fluorine evolution.

A comparison between the number of applied anodic coulombs
and the number of reduction coulombs required to reduce the sorbed
species was made. These results are given in Figure 12 and
Table III. These experiments were made using a 0.1M solution of
NHuF in AHF. It was noted that the number of reduction coulombs
required after applying 6.0 v for 2 sec and 4.0 v for 30 sec was
the same. This would be expected because the same amount cof
fluorine should have been produced for either run since the
number of applied anodic coulombs was the same. Figure 13 shows
that the amount of fluorine required to saturate the fluoride
film at +46.0 v and +8.0 v is approximately the same. Thus there
is no significant change in the thickness of the fluoride film
formed at +6.0 v and +8.0 v.
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TABLE III

SUMMARY OF THE AVERAGE VALUE OBTAINED FROM THE CATHODIC
REDUCTION MEASUREMENTS MADE ON MONEL IN A SOLUTION
OF 0.01M NH,F IN AHF

ANODIC POTENTIAL/ NO. OF REDUCTIQON COUL. NO. OF COUL. APrYL1ED c./c 100
1/% X

SEC. APPLIED REQUIRED x 10 (Cl) ANODICALLY (C2)

6.0 v/30 sec 5.95 2.55 0.233
6.0 v/15 sec 4.25 1.22 0.348
6.0 v/5 sec 2.96 0.35 0.845
6.0 v/2 sec 1.84 0.136 1.35

4.0 v/30 sec 1.87 0.135 1.36

4.0 v/15 sec 1.12 0.063 1.75

4.0 v/11 sec 0.918 0.044 2.09

4.0 v/5 sec 0.74%0 0.015 4,93

4,0 v/3 sec 0.442 0.008 5.46

22
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Figure 14 shows the effect of the amount of reducing
curreut used upon the number c¢f reduction coulombs required to
reduce the sorbed [luorine after applying 31.5 coul at +6.0 v.
The limiting region between 300 to 500 .a corresponds to the
reduction of onlv the sorbed fluorine in the fluoride film. The
rise in the curve between 30 to 200 .a is due to reduction of
species in solution in additin ¢ sorbed reproducible species.

Figure 15 shows the decay «f the open-circuit potential
of Monel after applying 6.0 - for 65 wmin. It is easy to see that
the reduction current involved here wu'ld not have any significant
effect on the galvannstatic ca.hodi~ :eduction curves.

Electrode film resistance measurements show a significant
difference under anodic _.nditions and after stripping as shown
in Figure 16. Film resis._ances were calculated from the instantaneous
change in potential observed on spplication of a 10 .sec constant-
current, 3.6 ma pulse to the electrcde. The potential changes
were recorded by photcgraphs of oscilloscope traces. Since the
concentration of NH, I employed, 0.0IM, was small, the solution
resistance was re.atively high and therefore made a significant
contribution to the measured electrode film resistance. However,
the solution concentration was not changed significantly by the
passage of low currents for short pericds of rime; therefore,
contribution of solution resistance is constant and changes in
the values measured for different electrode treatments are due to
changes in the electrode film resistance. As shown in Figure 6,
application of cathodic current resulted in a steady decrease in
film resistance, while anodic polariration to +4.0 v resulted in
a rapid incredse to a constant value. The average change in film
resistance observed between the anndic state and stripped state
was i6.0 O oor 36 Gicvzx These results and results of the cathodie
stripping measurements Jescribed earlier in this report indicate
that the change in film resistance is due tv saturation and

discharge ot fluorine in the electrode corrosion product film.
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V. HF CONDUCTIVITY

The maintenance of HF of high purity in the electrolysis
cells is important in obtaining reproducible results and in
interpreting the data obtained. In the past quarter several
experiments were performed to check the effectiveness of cold
traps in purifying the carrier gas (N2) used in the AHF cells.

The effects of pure helium, passed through a liquid nitregen cold
trap, were compared to nitrogen passed through a dry ice cold trap.
Each gas was bubbled through the cell at a rate of 40 cc/min (twice
the normal rate used) for 15 hours, while the conductivity of the
HF was monitored by measurements with a pair of platinum electrodes.
Both runs showed a decrease in resistivity of approximately 250
(-cm but returned to their initial values of approximately 4000
()-cm after the gas was shut off and the cell allowed to return to
its equilibrium temperature of -20°C. The values recorded for
these two runs are shown in Figure 17. Thus we have concluded

that any increase in the conductivity was due only to a slight
temperature increase caused by the warmer nitrogen or helium gas
bubbled through the electrolytic cell. The cell temperature
returned to its equilibrium temperature slowly due to the poor
thermal conductivity of Kel-F.

The conductivity of the AHF in the new Kel-F electrolytic
cells was checked for periods up to 15 hours, with the cell closed
off, to determine if there was any water diffusion through the
cell wall. The initial resistivity for these runs was about
9000 O-cm in each case. The results showed a maximum decrease
of 190 O-cm for a 15-hour period. Ukaji and Kageyama (1) developed
an empirical equation relating the H20 content of AHF to its
resistivity as follows:

log x = 1,808 - 1.528 log R
where

R = resistivity X =% H20 by weight.

28
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Using this equation, a diffusion rate of 1.73 x 107! ml/hr can

be calculated as a result of the 190 0-cm decrease in resistivity.
Thus any water diffusion during a normal working day is negligible.
This will allow more accurate interpretations of conductivity
changes in the electrolytic cells.

It has not been possible to obtain HF with a conductivity
less than 10'2 mho/cm by the NaF trapping procedure; therefore,
this has been replaced by pre-electrolysis in the cells. By
electrolyzing the HF in the electrolytic cells before it is used,
very pure AHF was obtained. One example of this is that the
resistivity of the HF increased from 300 to 8000 (-cm after a
potential of 7.0 volts and a current of 18 ma was applied across
the nickel screens for 15 hours. Periods of approximately 20
hours are needed to get a resistivity of greater than 10" (Q-cm.
According to Ukaji and Kageyama's equation (1) this corresponds
to 5 x 10'5 ml of water present in the electrolytic cell, which
contains 100 ml of AHF.

When a clean Monel electrode was introduced into the cell,
the conductivity increased by at least a factor of two. This was
presumably due to metal ion contamination on corrosion of the
Monel in the AHF. When the first rapid polarization curve was
run on a Monel electrode after it had been in the cell for 100
minutes, the resistivity decreased an additional amount from 2900
to 2710 Q-cm.

The addition of small amounts of water or NH,F to AHF had
similar effects on the resistivity of the AHF Eight milligrams
(2.16 x 1073 M/1) of NH,F were added to the AHF and the resistivity
decreased from 8000 to 45 QO-cm. When 0.05% water was added to
AHF, the resistivity decreased from 6000 to 68 O-cm. From these
data the equivalent conductance of water in HF was calculated to
be 528 and 447 mhos-cme for 0.05 and 0.1%, respectively. These
are similar to values obtained for solutions of strong acids in

water.
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VI, ANALYTICAL WORK

The products which may be formed by the electrochemical

fluorination of ammonia in AHF include gaseous products (NF3,
NHF,, and NH F) and soluble products (N ;, NH F2, etc.). A
determination of the distribution of these products as a function
of electrode and electrolyte parameters is necessary to describe
the kinetics and mechanism of the electrode reactions. At the
present, these goals are being achieved by the use of gas chroma-
tography and infrared spectra for analyses of the vapor phase and
by electrochemical measurements and infrared spectra for the
solution phase. Results for the electrochemical measurements were

given in earlier sections of this report.

The selection of materials for IR gas and liquid cell
windows for this work is very limited because of the high
reactivity of the compounds studied. Materials investigated
were Kel-F, NaCl coated with Kel-F grease, BaFa, and Irtran-2
(poly-zinc sulphide). The most satisfactory of these is Irtran-2,
which gives excellent spectra for gaseous HF (Figure 18) and NF3
(Figure 19). After exposurc to HF and NF3, the background spectrum
of Irtran-2 reproduced the background obtained before exposure
indicating a high degree of stability in the presence of fluorinated
compounds. A calibration curve to be used for the analysis of
NF3 in gaseous products is shown in Figure 20. Preliminary
experiments with the chromatograph have indicated that a 20-foot
long, 1/4-inch diameter Monel column packed with #40 Kel-F grease
on shredded Teflon gives satisfactory results for the analysis of
fluorinacted mixtures. Calibration IR curves using HF gas and NF3
are being made using the gas chromatograph.
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VII. SUMMARY OF ELECTRODE MATERIALS

Twenty electrode materials were investigated during the
past report year for possible use as an anode material in AHF.
The behavior of these materials can be divided into four distinct
classes.

Class I Materials which exhibited a high corrosion

rate in AHF.

Class I1 - Materials which exhibited a low corrosion
rate in AHF due to formation of a passive
nonconducting film.

Class II1 - Materials which exhibited a low corrosion
rate in AHF due to formation of a passive
conducting film. Anodic fluorine evolution
was observed from these materials.

Class IV - Materials which exhibited a negligible corrosion
rate in AHF at open circuit but were severely
damaged by fluorine evolution during anodic
polarization.

The Class I materials are antimony, bismuth, cadmium,
molybdenum, silver, zir-onium diboride, and thallium. High current
densities (on the order of 10° ua/cma) at low potentials was the
dominant characteristic of polarization curves of these metals
(except thallium which dissolved too rapidly for a polarization
curve to be obtained) in AHF as shown in Figures 21-26. Weight
change data on cadmium and molybdenum at open circuit and at anodic
bias are shown in Figures 27 and 28. Weight loss studies at anodic
bias showed that the corrosion current efficiency was nearly 1007
for antimony, bismuth, cadmium, and molybdenum (see Table IV).

The high weight loss rates of silver and thallium in AHF at open

34




|
| *
5: ./ :". !
0 o ./"“_I’/’ — 5
C ./l ‘;” ;
- _
- s -* §
- 3
4
- . -® g
Y y
7 s
< F o :
S S °Sb IN AHF 2.5 5
a4 0 /_,’ HOURS BEFORE B
3 E J/ RAPID POL ARIZATION i
> C 1/ i
: - .r
2 I
W e
(o] i 7
h ;-
z . M
& 3 i
€ 10 i
S L Bl
© = | ! i
L ‘ | |
S |
- [ J
[ n |
i | | |
2
o | J
|
. |
[ o |
. !
|
0 !
- 0 2 3 . 3 6

POTENTIAL ( VOLTS VS P1)

Fig21-POLARIZATION CURVES FOR ANTIMONY IN AHF

35 TRACOR, w OwG a729- 4
aSTIN, TEXAS 4 -0 +09-8.

*W'Mwhmmm s




1031 -
|
|O‘: - -
s /
‘\) 0
‘ -
1 —
>
- -
» A )
5 A B N AMF 2 HRS BEFORE RAPID
& o3l POLARIZATION
- L
e F |
e
r—
= [ 1
(&)
| o
i j
102; -
4
)
1D
04 0] 04 on i 2 1 4 20 24

POTENTIAL ( vOLTS VS P: ;

Fig.22- POLARIZATION CURVES FOR BISMUTH IN AMF

3k
THACOR & SwG T 904
‘-\’s'"-"_}‘.-{’ . | IR » ~f‘;‘j|, -

- r-

\ - — o ~ . - - a a e - e T ———- - ——




S
(™

~N

CURRENT ODENSITY (uA/CM%)
5

i
H
I3
i

+ s —4»—-- B e e ta
i

; | ‘: | X—INITIAL RUN

i ;
| ¢ i
X #-2ND RUN :
30 MiN. LATER)
f |
i a - _. i

o © 2 e 6 ) 10 12
POTENTIAL  (VOLTS VS Mg/Mg.F))

Fig.23-ANODIC POLARIZATION OF CADMIUM
IN 0.0I125M Nqf IN AHF TRACOR ¢ - DWC°29 4

ayltioe, TERAS - 2 6% &7 8.

. - o e e e et S [ S im— e —— e o e




CURRENT DENSITY (uA/CM"}

10

-2

Fig.24-ANODIC POLARIZATION OF MGLYBDENUM

pr—— . T v
- I )/0
4, o)
- /| / O—=¢—"—=0
. /®
/
e ’
- o)
- i
. /
L le
a /
{
! /
I
- ﬁ @ — AHF  ONLY B
E 15 O— 0.0IM Nof (N AHF
I
8 I
- |
i i
i
- @
|
't:f
- ®
- |
: |
|
|
- |
0 2 4 6

POTENTIAL (VULTS VS Hg/Hg,F,)

38

TRACOR, iN¢C

1 DWG

729150

AUSTIN, TEXAS

3/4/68

LOP/OH




CURRENT DENSITY (4A/CM?)

T

l A Ag IN AHF 10 MIN. BEFORE RAPID
POLARIZATION

2 o) 2 4 6 .8 1.0 1.2

POTENTIAL (VOLTS VS PT)

Fig.25-POLARIZATION CURVES FOR SILVER IN AHF

39 TRACOR, 'NC OWG A729-:03

AUSTIN, TEXAS T-13-@4 LOPF-BJ




Fig. 26 - ANODIC POLARIZATION OF ZIRCONIUM DIBORIDE IN AWF
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circuit are expected because of the high solubility of AgF and

T1F in HF. Zirconium diboride (a 0.001 inch thick plasma sprayed
coating of zirconium diboride on a 0.125 inch zirconium rod) in

AHF showed a weight loss of 1.98 mg/cm2 during a two-hour anodic
run. The calculated corrosion current weight loss for the run was
3.6 mg/cmz. Thallium dissolved in AHF at open circuit at a
tremendous rate (61.0 mg/cma/hr). Attempts were made to take
advantage of the lower solubility of TlF3 to passivate the electrode
by immersing it under applied anodic bias of +10.0 v to oxidize the
corrosion product to T1F3. These attempts were unsuccessful as
excessive dissolution rates were also observed under these conditioms.

An estimate of the solubility of MoF6 was obtained from anodic
corrosion studies of molvbdenum in AHF. The conductivity of the
AHF was monitored during the anodic corrosion runs until it reached
a constant value. This was taken to be the point at which the
solution was saturated with MoFG. The measured weight losses up
to this time were used to determine the solubility, which was found
to be 0.018 g/100g AHF at -20°C.

All materials in this class were rejected as anode materials
due to their high corrosicn rates in AHF.

The Class II materials are aluminum, chromium, cobalt,
copper, Hastelloy-F, iron, magnesium, titanium, zinc, and zirconium.
Low current densities{on the order of 102 ua/cmz) over the entire
potential range was the dominant characteristic of polarization
curves of these metals in AHF and in AHF with NaF, NaHF,, and/or
NH3 added as shown in Figures 29-38. There was no appreciable in-
crease in the current density upon addition of NaF, NsHF2, or NH3
as a supporting electrolyte. Thus, current is limited by a high
electrode film resistance rather than the resistance of the AHF.
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The only twoe exceptions to having the low current density
over the entire range were chromiam and Hastelloy-F, which
exhibited a sharp increase in current density past 6.0 v vs
Hg/Hg2F2. Weight change data at +8.0 v vs Hg/Hg,F, showed that
this high current density was due to metdal corrosion on both the
chromium and Hastelloy-F electrodes. A possible explanation for
this is that CrF2 is rformed at the lower potentials and is not
soluble in AHF, but at the higher potentials the Cr+2 is oxidiced
to Cr+3

F, which is 227 chromium {3,, is dependent on the H,O concentration
P 2

which forms a soluble CrF3 film. The behavior of Hastell. y-

of the HF. For HEO concentrations greater than 0.05", no appreciable
corrosion was noted; but for lower HZO concentrations on the order

of IO'Q? H20, corrosion occurred at a high rate. Corrosion current
efficiency was found to be nearly 100" assuming an equivaient

weight of 28 for Hastelloy-F (3.

The polariczaticn characteristics ot Hastelloy-F are alsco
dependent on the HQO concentration as shown hv Figure 33. The
electrode used at tbv lower HQD concentration was badly corroded
and lost 2.28 mg/cm‘

the higher HQQ concentration ~howe ! o visible signs ot corresion

durine the run, while the electrade used at

and no significant weivht chanece.  Poidently this additional
armcunt of HQO in the HE i1nhibits corvesion at the higher anodic
potentials. This eftect has alse been observed by Donahue and

Nevitr 4.

Noosdwniticdnt cnances dn the poelarirzati oL characteristics

ot any of these materials were noted o0 one addition o N F

to the AHF.

wWeleht foss Jata were obtdined 0 ool mwtals 1n this olass
: : P : [ ) 1o :
at open cilroult and/or ar avodic Mla- Flodles 4u=-44 show welohy

change a- a4 tunctivn ! llrme ftor aiunivar, chroviar, Hastellov-i

and zinc. Io 15 noted that e wittet 1 ss redaches a4 oomstant
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TRACGOR, 17 Gindalupa St Ayen, Tenas 7870

value after several hours for aluminum, chromium, and Hastelloy-F,
indicating formation of a passive film. Known solubilities and
other weight loss data for these metals are given in Table V.
These data, along with the polarization curves, show that a
passive or almost passive nonconducting film is formed on each of
these metals. No indication of fluorine evolution was noted in
any polarization curves.

An interesting observation made during studies on aluminum
was the growth of crystals on the aluminum electrode upon removal
from the cell after various treatment. For instance, after 20
minutes at the cathodic potential of -3.0 v in a 8% H,0 solution
by volume, crystal growth began upon exposure to air. Thesge
crystals grew in a planar configuration perpendicular to the
electrode, and growth took place at the base rather than at the
tip of the cirystals. After an initial growth of about 1.5 inches
during the first hour, a final length of about 6.0 inches was
reached in 24 hours (see Figure 45).

+he formation of a nonconducting passive film, and conse-
quently, poor polarization characteristics, render these materials
unsuitable for use as anode materfal for electrochemical studies
in AHF.

The Class III materials are Monel and platinum. Both of
tnese materials have low weight loss rates in AHF at open circuit,
a2s shown in Table VI, and ailow fluorine evolution upon anodic
polarizacion. Weight loss rates at anodic potentials are higher
than at open circuit, particularly on platinum, but still account
for only a small fraction of the anu.dic current up to the highest
potentials studied.
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Fig.45-CRYSTALLINE GROWTH ON
ALUMINUM ELECTRODE
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TABLE VI

DATA ON CLASS III MATERIALS

WEIGHT LOSS RATE
AT ANODIC BIAS

METAL POTENTIAL 2
VS Hg/ngF2 (mg/cm®/hr)
Exptl.  Calc.
Monel Open Circuit -0.154  -----
Monel + 8.0 v +0,054 +15.42
Monel +12.0 v +4 .4 + 8.2
Pt Open Circuit +0.33 2 -----
Pt +5.0v +10.0 +70.0

and CuF,.

“assuming formation of NiF2 2
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The polarization curves obtained on Monel in AHF are
reproducible and stable after the electrods has been in AHF for
several hours. The first polarization curve on a Monel electrode
which has been in AHF for less than one hour has a peak at
about +1.0 v as shown in Figure 46. This peak is probably due to
a film formation and is not observed on successive runs. The
cathodic polarization is completely dominated by the H2 evolution
current as shown in Figure 6.

A typical anodic polarization curve on platinum in AHF is
shown in Figure 47. The high current densities past +2.0 v are
due to fluorine evolution and some metal corrosion as evidenced
by the weight loss rate of platinum at +5.0 v (see Table VI).

Since Monel forms a passive conducting film in AHF and has
the best polarization characteristics of any material tested, it
is being used as the anode for studies of the electrochemical
fluorination of ammonia and hydrazine in AHF.

The Class IV material was pyrolytic carbon. Pyrolytic
carbon disks were sealed in Kel-F so only the surface of the
carbon lamella was exposed to the AHF (see Figure 48). It was
hoped that exposure of only one plane of the pyrolytic layer
structure would prevent the disintegration observed by other
workers. Electrical contact was made by sealing a Teflon-coated
nickel wire to the back side of the carbon electrode.

Anodic polarization caused exfoliation of the layers of
the electrode. An electrode which was immersed in AHF at open
circuit showed no signs of corrosion or exfoliation as seen in
Figure 48. Tvs, it was concluded that, although pyrolytic carbon
is resistan: to AHF, fluorine penetrates the lattice and causes
disintegration of the structure which makes it unsuitable for use
as an anode material in AHF.
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Fig 48 - PYROLYTIC CARBON
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VIII. DISCUSSION

The present system of Monel anodes, Hg/Hg2F2 reference
electrodes, Kel-% conductance and electrolytic cells, and pre-
fluorinated HF handling equipment, have all proved to be satisfactory
and will be used to continue studies of the fluorination of ammonium
and hydrazinium ions. With this system it is possible to obtain and
maintain HF with a conductivity of 10'5 0-1
electrolysis studies.

cm-l for use in the

Of the 20 anode materials studied to date, only Monel ful-
fills all of the requirements as a suitable working electrode for
electrochemical fluorination studies in AHF. It has been determined
that the change in film composition which occurs on Monel electrodes
at potentials of +4.0 v and greater is due to fluorine sorption.
Since a fluoride film of limited thickness and saturated witb
fluorine can be obtained, it is still possible to regulate the
amount of fluorine available for the fluorination of NHI or N2H;.

From the results obtained to date, it appears that the
fiuorination of ammonium ions proceeds by chemical reaction rather
than by an electrochemical mechanism. However it should still be
possible to obtain workable concentrations of partially fluorinated
cations by controlling thke fluorine evolution rate and diffusion of
NHI ions to the electrode. In view of the lack of concentration -
dependent waves for the fluorination of ammonium ions, the
electrochemical studies are being supplemented with IR and gas
chromatography analysis. The data from these analyses will be
compared with data from gas and liquid samples of known composition.
These studies are presently being done with the purpcse of jdentify-
ing the products obtained from constant potential electrolysis of i
solutions of NHuF in AHF. i
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IX. FUTURE WORK

Work now in progress consists of further studies on the
electrochemical fluorination of NHuF at various anodic potentials
and identifying any products formed by infrared and gas chromzatog-
raphy analysis. The feasibility of using mass and nuclear magnetic
resonance spectra to analyze the electrolysis products will also
be considered.

Studies on the behavior of other electrode materials, e.g.,
nickel and nickel alloys, will also be continued.
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